Fixed-sequence Single Machine Scheduling and Outbound Delivery Problems

نویسندگان

  • Azeddine Cheref
  • Alessandro Agnetis
  • Christian Artigues
  • Jean-Charles Billaut
چکیده

In this paper, we study an integrated production an outbound delivery scheduling problem with a predefined sequence. The manufacturer has to process a set of jobs on a single machine and deliver them in batches to multiple customers. A single vehicle with limited capacity is used for the delivery. Each job has a processing time and a specific customer location. Starting from the manufacturer location, the vehicle delivers a set of jobs which constitute a batch by taking into account the transportation times. Since the production sequence and delivery sequence are fixed and identical, the problem consists in deciding the composition of batches. We prove that for any regular sum-type objective function of the delivery times, the problem in NP-hard in the ordinary sense and can be solved in pseudopolynomial time. A dynamic programming algorithm is proposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Immune System for Single Machine Scheduling and Batching Problem in Supply Chain

This paper addresses a production and outbound distribution scheduling problem in which a set of jobs have to be process on a single machine for delivery to customers or to other machines for further processing. We assume that there is a sufficient number of vehicles and the delivery costs is independent of batch size but it is dependent on each trip. In this paper, we present an Artificial Imm...

متن کامل

Single-machine scheduling considering carryover sequence-dependent setup time, and earliness and tardiness penalties of production

Production scheduling is one of the very important problems that industry and production are confronted with it. Production scheduling is often planned in the industrial environments while productivity in production can improve significantly the expansion of simultaneous optimization of the scheduling plan. Production scheduling and production are two areas that have attracted much attention in...

متن کامل

An Efficient Bi-objective Genetic Algorithm for the Single Batch-Processing Machine Scheduling Problem with Sequence Dependent Family Setup Time and Non-identical Job Sizes

This paper considers the problem of minimizing make-span and maximum tardiness simultaneously for scheduling jobs under non-identical job sizes, dynamic job arrivals, incompatible job families,and sequence-dependentfamily setup time on the single batch- processor, where split size of jobs is allowed between batches. At first, a new Mixed Integer Linear Programming (MILP) model is proposed for t...

متن کامل

GENETIC AND TABU SEARCH ALGORITHMS FOR THE SINGLE MACHINE SCHEDULING PROBLEM WITH SEQUENCE-DEPENDENT SET-UP TIMES AND DETERIORATING JOBS

 This paper introduces the effects of job deterioration and sequence dependent set- up time in a single machine scheduling problem. The considered optimization criterion is the minimization of the makespan (Cmax). For this purpose, after formulating the mathematical model, genetic and tabu search algorithms were developed for the problem. Since population diversity is a very important issue in ...

متن کامل

Minimizing the maximum tardiness and makespan criteria in a job shop scheduling problem with sequence dependent setup times

The job shop scheduling problem (JSP) is one of the most difficult problems in traditional scheduling because any job consists of a set operations and also any operation processes by a machine. Whereas the operation is placed in the machine, it is essential to be considering setup times that the times strongly depend on the various sequencing of jobs on the machines. This research is developed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016